Advertisements
Development of Wireless Sensor Network Testbed Development of Wireless Sensor Network Testbed
Content Structure of Development of Wireless Sensor Network Testbed Development of Wireless Sensor Network Testbed
The abstract contains the research problem, the objectives, methodology, results, and recommendations
- Chapter one of this thesis or project materials contains the background to the study, the research problem, the research questions, research objectives, research hypotheses, significance of the study, the scope of the study, organization of the study, and the operational definition of terms.
- Chapter two contains relevant literature on the issue under investigation. The chapter is divided into five parts which are the conceptual review, theoretical review, empirical review, conceptual framework, and gaps in research
- Chapter three contains the research design, study area, population, sample size and sampling technique, validity, reliability, source of data, operationalization of variables, research models, and data analysis method
- Chapter four contains the data analysis and the discussion of the findings
- Chapter five contains the summary of findings, conclusions, recommendations, contributions to knowledge, and recommendations for further studies.
- References: The references are in APA
- Questionnaire.
Abstract Of Development of Wireless Sensor Network Testbed Development of Wireless Sensor Network Testbed
The needs for human to know the constituent surrounding their environment and how it affects their life; this brings the necessitation to study some phenomenon that constitute to nature such as temperature, humidity, light intensity to mention but few. With this necessitation, this project work presents an embedded wireless sensor network (WSN) prototype system for weather condition monitoring.
The designed system provides a user interface for user with the software design to access the current and past readings of the respective nodes. The network consists of a data gateway or server which wirelessly collects data from each WSN monitoring node in their respective locations. Each WSN node consists of an Atmega328p microcontroller, sensors and an Xbee wireless communication module based on the IEEE 802.15.4/ Zigbee and industrial, scientific and medical standards. Hence, the server unit allows data collection over Xbee radio frequency module and data access from the designed interface.
Advertisements
It is observed from the results obtained that the higher the temperature; the lower the humidity value and vice versa. The light intensity depends on the energy quality of the light ray while the smoke sensor operates in either logic low or high which represents absence or presence of smoke.
Having studied the literature, this project work design was achieved and implemented successfully using an enabling microcontroller to coordinate all the events and a star network topology was employed to enable communication via a single receiver medium.
Advertisements